Optimization of sawtooth surface-relief gratings: effects of substrate refractive index and polarization.

نویسندگان

  • Shun-Der Wu
  • Thomas K Gaylord
  • Elias N Glytsis
چکیده

The effect of the refractive index of the substrate together with the incident polarization on the optimization of sawtooth surface-relief gratings (SRGs) is investigated. The global optimum diffraction efficiencies of the -1st forward-diffracted order of sawtooth SRGs are 63.3% occurring at n2=1.47 for TE polarization and 73.8% occurring at n2=2.88 for TM polarization. Incident TE polarization has higher optimum diffraction efficiency than TM polarization for all n2<1.85. In contrast, TM polarization has higher optimum diffraction efficiency than TE polarization for all n2>1.85. A polymer (n2=1.5) optimum sawtooth SRG exhibits 62.6% efficiency for TE polarization. A silicon (n2=3.475) optimum sawtooth SRG exhibits 68.6% efficiency for TM polarization. These sawtooth SRGs are compared to right-angle-face trapezoidal SRGs. It is found that the optimum profiles of right-angle-face trapezoidal SRGs have only very slightly increased efficiencies over sawtooth SRGs (0.04% for TE and 0.55% for TM).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications

We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...

متن کامل

Design of Photonic Crystal Polarization Splitter on InP Substrate

In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...

متن کامل

Optimization of anisotropically etched silicon surface-relief gratings for substrate-mode optical interconnects.

The optimum profiles of right-angle-face anisotropically etched silicon surface-relief gratings illuminated at normal incidence for substrate-mode optical interconnects are determined for TE, TM, and random linear (RL) polarizations. A simulated annealing algorithm in conjunction with the rigorous coupled-wave analysis is used. The optimum diffraction efficiencies of the -1 forward-diffracted o...

متن کامل

Surface-relief and polarization gratings for solar concentrators.

Transmission gratings that combine a large diffraction angle with a high diffraction efficiency and a low angular and wavelength dispersion could be used to collect sunlight in a light guide. In this paper we compare the diffractive properties of polarization gratings and classical surface-relief gratings and explore their possible use in solar concentrators. It is found that polarization grati...

متن کامل

Fabrication of sawtooth diffraction gratings using nanoimprint lithography

We report a process which integrates interference lithography, nanoimprint lithography, and anisotropic etching to fabricate replicated diffraction gratings with sawtooth profiles. This new process greatly reduces grating fabrication time and cost, while preserving the groove shape and smoothness. Relief gratings with 400 nm period inverted triangular profiles and 200 nm period gratings with 7°...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 45 15  شماره 

صفحات  -

تاریخ انتشار 2006